3.7.97 \(\int \frac {1}{\sqrt {a+b \text {ArcSin}(c x)}} \, dx\) [697]

Optimal. Leaf size=101 \[ \frac {\sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {\sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} c} \]

[Out]

cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/c/b^(1/2)+FresnelS(2^(1/2
)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/c/b^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4719, 3387, 3386, 3432, 3385, 3433} \begin {gather*} \frac {\sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {\sqrt {2 \pi } \sin \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + b*ArcSin[c*x]],x]

[Out]

(Sqrt[2*Pi]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(Sqrt[b]*c) + (Sqrt[2*Pi]*Fresnel
S[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(Sqrt[b]*c)

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4719

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[-a/b + x/b], x], x,
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b \sin ^{-1}(c x)}} \, dx &=\frac {\text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}\\ &=\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}+\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}\\ &=\frac {\left (2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b c}+\frac {\left (2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b c}\\ &=\frac {\sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {\sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.07, size = 121, normalized size = 1.20 \begin {gather*} \frac {i e^{-\frac {i a}{b}} \left (-\sqrt {-\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {1}{2},-\frac {i (a+b \text {ArcSin}(c x))}{b}\right )+e^{\frac {2 i a}{b}} \sqrt {\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {1}{2},\frac {i (a+b \text {ArcSin}(c x))}{b}\right )\right )}{2 c \sqrt {a+b \text {ArcSin}(c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + b*ArcSin[c*x]],x]

[Out]

((I/2)*(-(Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSin[c*x]))/b]) + E^(((2*I)*a)/b)*Sqrt[
(I*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, (I*(a + b*ArcSin[c*x]))/b]))/(c*E^((I*a)/b)*Sqrt[a + b*ArcSin[c*x]])

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 90, normalized size = 0.89

method result size
default \(\frac {\sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \left (\cos \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right )-\sin \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right )\right )}{c}\) \(90\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arcsin(c*x))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*(cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)-sin(
a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b))/c

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(c*x))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a + b \operatorname {asin}{\left (c x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*asin(c*x))**(1/2),x)

[Out]

Integral(1/sqrt(a + b*asin(c*x)), x)

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 0.46, size = 159, normalized size = 1.57 \begin {gather*} -\frac {\sqrt {\pi } \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{c {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {\sqrt {\pi } \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{c {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsin(c*x))^(1/2),x, algorithm="giac")

[Out]

-sqrt(pi)*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(a
bs(b))/b)*e^(I*a/b)/(c*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - sqrt(pi)*erf(1/2*I*sqrt(2)*sqrt(b*
arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/(c*(-I*sqrt(2)*
b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b))))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {a+b\,\mathrm {asin}\left (c\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*asin(c*x))^(1/2),x)

[Out]

int(1/(a + b*asin(c*x))^(1/2), x)

________________________________________________________________________________________